Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C32⋊D6

Direct product G=N×Q with N=C2 and Q=C2×C32⋊D6
dρLabelID
C22×C32⋊D636C2^2xC3^2:D6432,545


Non-split extensions G=N.Q with N=C2 and Q=C2×C32⋊D6
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C32⋊D6) = C4×C32⋊D6central extension (φ=1)366C2.1(C2xC3^2:D6)432,300
C2.2(C2×C32⋊D6) = C2×C6.S32central extension (φ=1)72C2.2(C2xC3^2:D6)432,317
C2.3(C2×C32⋊D6) = C2×He3⋊(C2×C4)central extension (φ=1)72C2.3(C2xC3^2:D6)432,321
C2.4(C2×C32⋊D6) = C3⋊S3⋊Dic6central stem extension (φ=1)7212-C2.4(C2xC3^2:D6)432,294
C2.5(C2×C32⋊D6) = C12⋊S3⋊S3central stem extension (φ=1)7212+C2.5(C2xC3^2:D6)432,295
C2.6(C2×C32⋊D6) = C12.84S32central stem extension (φ=1)726C2.6(C2xC3^2:D6)432,296
C2.7(C2×C32⋊D6) = C12.91S32central stem extension (φ=1)726C2.7(C2xC3^2:D6)432,297
C2.8(C2×C32⋊D6) = C12.85S32central stem extension (φ=1)726-C2.8(C2xC3^2:D6)432,298
C2.9(C2×C32⋊D6) = C12.S32central stem extension (φ=1)7212-C2.9(C2xC3^2:D6)432,299
C2.10(C2×C32⋊D6) = C3⋊S3⋊D12central stem extension (φ=1)3612+C2.10(C2xC3^2:D6)432,301
C2.11(C2×C32⋊D6) = C12.86S32central stem extension (φ=1)366+C2.11(C2xC3^2:D6)432,302
C2.12(C2×C32⋊D6) = C2×He32Q8central stem extension (φ=1)144C2.12(C2xC3^2:D6)432,316
C2.13(C2×C32⋊D6) = C62.8D6central stem extension (φ=1)7212-C2.13(C2xC3^2:D6)432,318
C2.14(C2×C32⋊D6) = C62.9D6central stem extension (φ=1)726C2.14(C2xC3^2:D6)432,319
C2.15(C2×C32⋊D6) = C2×He32D4central stem extension (φ=1)72C2.15(C2xC3^2:D6)432,320
C2.16(C2×C32⋊D6) = C2×He33D4central stem extension (φ=1)72C2.16(C2xC3^2:D6)432,322
C2.17(C2×C32⋊D6) = C62⋊D6central stem extension (φ=1)3612+C2.17(C2xC3^2:D6)432,323
C2.18(C2×C32⋊D6) = C622D6central stem extension (φ=1)366C2.18(C2xC3^2:D6)432,324

׿
×
𝔽